33 research outputs found

    On coloring parameters of triangle-free planar (n,m)(n,m)-graphs

    Full text link
    An (n,m)(n,m)-graph is a graph with nn types of arcs and mm types of edges. A homomorphism of an (n,m)(n,m)-graph GG to another (n,m)(n,m)-graph HH is a vertex mapping that preserves the adjacencies along with their types and directions. The order of a smallest (with respect to the number of vertices) such HH is the (n,m)(n,m)-chromatic number of GG.Moreover, an (n,m)(n,m)-relative clique RR of an (n,m)(n,m)-graph GG is a vertex subset of GG for which no two distinct vertices of RR get identified under any homomorphism of GG. The (n,m)(n,m)-relative clique number of GG, denoted by Ο‰r(n,m)(G)\omega_{r(n,m)}(G), is the maximum ∣R∣|R| such that RR is an (n,m)(n,m)-relative clique of GG. In practice, (n,m)(n,m)-relative cliques are often used for establishing lower bounds of (n,m)(n,m)-chromatic number of graph families. Generalizing an open problem posed by Sopena [Discrete Mathematics 2016] in his latest survey on oriented coloring, Chakroborty, Das, Nandi, Roy and Sen [Discrete Applied Mathematics 2022] conjectured that Ο‰r(n,m)(G)≀2(2n+m)2+2\omega_{r(n,m)}(G) \leq 2 (2n+m)^2 + 2 for any triangle-free planar (n,m)(n,m)-graph GG and that this bound is tight for all (n,m)β‰ (0,1)(n,m) \neq (0,1).In this article, we positively settle this conjecture by improving the previous upper bound of Ο‰r(n,m)(G)≀14(2n+m)2+2\omega_{r(n,m)}(G) \leq 14 (2n+m)^2 + 2 to Ο‰r(n,m)(G)≀2(2n+m)2+2\omega_{r(n,m)}(G) \leq 2 (2n+m)^2 + 2, and by finding examples of triangle-free planar graphs that achieve this bound. As a consequence of the tightness proof, we also establish a new lower bound of 2(2n+m)2+22 (2n+m)^2 + 2 for the (n,m)(n,m)-chromatic number for the family of triangle-free planar graphs.Comment: 22 Pages, 5 figure
    corecore